CS 598: Spectral Graph
 Theory. Lecture 2

Extremal Eigenvalues and Eigenvectors of the Laplacian and

 the Adjacency Matrix.Alexandra Kolla

Today

- Bounding eigenvalues
- Courant-Fischer and Rayleigh quotients
- Applications of Courant-Fischer
- Adjacency matrix vs. Laplacian
- Chromatic number
- Perron-Frobenius

Start Bounding Laplacian Eigenvalues

Sum of Eigenvalues, Extremal Eigenvalues

- $\sum_{i} \lambda_{i}=\sum_{i} d_{i} \leq d_{\text {max }} n$ where di is the degree of vertex i.

Proof: take the trace of L

- $\lambda_{2} \leq \frac{\sum_{i} d_{i}}{n-1}$ and $\lambda_{n} \geq \frac{\sum_{i} d_{i}}{n-1}$

Proof: previous inequality $+\lambda_{1}=0$.

Courant-Fischer

- For any nxn symmetric matrix A with eigenvalues $\alpha_{1} \geq$ $\alpha_{2} \geq \cdots \geq \alpha_{n}$ (decreasing order) and corresponding eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, denote S_{k} the span of $v_{1}, v_{2}, \ldots, v_{k}$ and S_{k}^{\perp} the orthogonal complement, then

$$
\alpha_{k}=\max _{x \in S_{k-1}^{\perp}, x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

$$
\alpha_{1}=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

Proof: see blackboard

Courant-Fischer

- Courant-Fischer Min Max Formula: For any nxn symmetric matrix A with eigenvalues $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq$ α_{n} (decreasing order),

$$
\begin{aligned}
\alpha_{k} & =\max _{S \subseteq R^{n}, \operatorname{dim}(S)=k} \min _{x \in S} \frac{x^{T} A x}{x^{T} x} \\
\alpha_{k} & =\min _{S \subseteq R^{n}, \operatorname{dim}(S)=n-k+1} \max _{x \in S} \frac{x^{T} A x}{x^{T} x}
\end{aligned}
$$

Proof: see blackboard

Courant-Fischer for Laplacian

- Courant-Fischer Min Max Formula for increasing evalue order (e.g. Laplacians): For any nxn symmetric matrix L, with eigenvalues in increasing order

$$
\begin{aligned}
& \lambda_{k}=\min _{S o f \operatorname{dim} k} \max _{x \in S} \frac{x^{T} L x}{x^{T} x} \\
& \lambda_{k}=\max _{S o f \operatorname{dim} n-k-1} \min _{x \in S} \frac{x^{T} L x}{x^{T} x}
\end{aligned}
$$

Definition (Rayleigh Quotient): The ratio $\frac{x^{T} L x}{x^{T} x}$ is called the
Rayleigh Quotient of x with respect to L.

- We will use it to bound evalues of Laplacians of certain graphs.

Courant-Fischer for Laplacian

- Applying Courant-Fischer for the Laplacian we get :

$$
\lambda_{k}=\max _{S \subseteq R^{n}, \operatorname{dim}(S)=n-k+1} \min _{x \in S} \frac{x^{T} L x}{x^{T} x}
$$

$$
\begin{gathered}
\lambda_{1}=0, v_{1}=1 \\
\lambda_{2}=\min _{x \perp 1, x \neq 0} \frac{x^{T} L x}{x^{T} x}=\min _{x \perp 1, x \neq 0} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i \in V} x_{i}{ }^{2}} \\
\lambda_{\max }=\max _{x \neq 0} \frac{x^{T} L x}{x^{T} x}=\max _{x \neq 0} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i \in V} x_{i}{ }^{2}}
\end{gathered}
$$

- Useful for getting bounds, if calculating spectra is cumbersome.
- To get upper bound on λ_{2}, just need to produce vector with small Rayleigh Quotient.
- Similarly, t o get lower bound on $\lambda_{\max }$ just need to produce vector with large Rayleigh Quotient

Example 1

- Lemma1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with some vertex whaving degree d. Then

$$
\lambda_{\max } \geq d
$$

- Lemma 2: We can also improve on that. Under same assumptions, we can show:

$$
\lambda_{\max } \geq d+1
$$

Proof: see blackboard

Example 1

- Lemma1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with some vertex whaving degree d. Then

$$
\lambda_{\max } \geq d
$$

- Lemma 2: We can also improve on that. Under same assumptions, we can show:

$$
\lambda_{\max } \geq d+1
$$

Lemma 2 is tight, take star graph (ex)

Example 2

- The Path graph P_{n} on n vertices has

$$
\lambda_{2} \leq \frac{12}{n^{2}}
$$

- Already knew that eigenvalues are
$2-2 \cos \left(\frac{\pi k}{n}\right) \approx 2\left(1-1+\frac{\pi^{2}}{2 n^{2}}\right) \approx \frac{\pi^{2}}{n^{2}}$ but this is easier and more general.

Proof: see blackboard

Example 3

- The complete binary tree Bn on $\mathrm{n}=2^{d}-1$ vertices has

$$
\lambda_{2} \leq \frac{2}{n-1}
$$

B_{n} is the graph with edges of the form $(u, 2 u)$ and $(u, 2 U+1)$ for $u<n / 2$.

Proof: See blackboard

Example 3

- Lower bounds are harder, we will see some in two lectures (different technique)

Adjacency Matrix vs. Laplacian

Adjacency Matrix Refresher

$$
A_{-} \int \quad 1, \quad \text { if }(i, j) \text { edge }
$$

$$
0 \text { if no edge between } i, j
$$

- Adjacency matrix as operator:

$$
\left(A_{G} \boldsymbol{u}\right)(i)=\sum_{j:(i, j) \in E} \boldsymbol{v}(j)
$$

Adjacency Matrix vs. Laplacian for d-regular graphs

- G is d-regular if every vertex has degree d. In this case: $L_{G}=D_{G}-A_{G}=d I-A_{G}$
- Let $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be the evalues of L and $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ be the evalues of A.
- We have $\alpha_{i}=d-\lambda_{i}$ and the corresponding evectors are the same.

Bounds on the Eigenvalues of Adjacency Matrix

- $\alpha_{1} \leq d_{\max }$

Proof: See blackboard.

- Adjacency matrix as operator:

$$
\left(A_{G} \boldsymbol{u}\right)(i)=\sum_{j:(i, j) \in E} \boldsymbol{v}(j)
$$

Bounds on the Eigenvalues of Adjacency Matrix

- $\alpha_{1} \leq d m a x$ with equality iff graph is dmax - regular. In this case, the first eigenvector is the all-one's vector. (exercise)

Courant-Fischer for Adjacency Matrix Refresher

$$
\begin{aligned}
& \alpha_{k}=\max _{S o f \operatorname{dim} k} \min _{x \in S} \frac{x^{T} A x}{x^{T} x} \\
& \alpha_{1}=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}
\end{aligned}
$$

- Will see next how to apply Courant-Fischer for the adjacency matrix to get another bound on the first eigenvalue as well as a relation to graph coloring

Bounding Adjacency Matrix Eigenvalues

- Lemma 1: α_{1} is at least the average degree of the vertices in G
Proof: see blackboard

$$
\alpha_{1}=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

Bounding Adjacency Matrix Eigenvalues

- Lemma 1: α_{1} is at least the average degree of the vertices in G
- While we may think of α_{1} as being related to the average degree, it behaves differently. If we remove the vertex of smallest degree in a graph, the average degree can increase. However, α_{1} only decreases when we remove a vertex.
- Lemma2: Let A be a symmetric matrix, let B be the matrix obtained by removing the last row and column from A and let b_{1} be the largest eigenvalue of B. Then $\alpha_{1} \geq b_{1}$

Chromatic Number

- The chromatic number of a graph G, denoted $\chi(G)$, is the least k for which G has a k-coloring.
- Theorem (Wilf): $\chi(\mathrm{G}) \leq\left\lfloor\alpha_{1}\right\rfloor+1$

Proof: see blackboard

Chromatic Number

- The chromatic number of a graph G , denoted $\chi(G)$, is the least k for which G has a k-coloring.
- Theorem (Wilf): $\chi(\mathrm{G}) \leq\left\lfloor\alpha_{1}\right\rfloor+1$
- Improvement over classical bound $\chi(G) \leq d \max +1$, as there are graphs (e.g. path graph) where α_{1} is much less than dmax

Adjacency Matrix: The PerronFrobenius Theorem

- We saw what happens for regular graphs. What is G is not regular? We know that $\alpha_{1}<d_{\text {max }}$ but what about v_{s} ?
Perron-Frobenius Theorem (for graphs): Let $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ be a connected graph, A its adjacency matrix and $\mu_{1} \geq \cdots \geq \mu_{n}$ its evalues. Then:
(i) $\mu_{1} \geq-\mu_{n}$
(ii) $\mu_{1}>\mu_{2}$
(iii) μ_{1} has a strictly positive eigenvector

Bipartite?

- Another graph Property and eigenvalues: Bipartiteness
- Theorem: If G is a connected graph then $\mu_{1}=-\mu_{n}$ iff G is bipartite.

Coloring, again, and Independent Sets

- The most negative eigenvalue of the adjacency matrix (and the largest eigenvalue of the Laplacian) corresponds to the highest frequency vibration in a graph. Its eigenvector tries to assign as different as possible values to neighbors. Corresponds to coloring.

Coloring, again, and Independent Sets

- Theorem (Hoffman). Let S be an independent set in G, and let $\operatorname{dav}(S)$ be the average degree of a vertex in S. Then

$$
|S| \leq n\left(1-\frac{d_{a v}(S)}{\lambda_{n}}\right)
$$

- It follows that $\chi_{G} \geq \frac{\lambda_{n}}{\lambda_{n}-d_{a v}}$ (exercise)

Laplacian: The Perron-Frobenius Theorem

- Theory can also be applied to Laplacians and any matrix with non-positive off-diagonal entries. It involves the eigenvector with smallest eigenvalue.

Perron-Frobenius for Laplacians:Let M be a matrix with non-positive off-diagonal entries s.t. the graph of the no-zero off-diagonal entries is connected.
Then the smallest eigenvalue has multiplicity 1 and the corresponding eigenvector is strictly positive.

Next time we will see how to apply Peron Frobenius to show Fiedler's nodal domain theorem.

