
CS 598: Spectral Graph 

Theory. Lecture 2 

Extremal Eigenvalues and 
Eigenvectors of the Laplacian and 
the Adjacency Matrix. 

Alexandra Kolla 



Today 

 Bounding eigenvalues 

 Courant-Fischer and Rayleigh quotients 

 Applications of Courant-Fischer 

 Adjacency matrix vs. Laplacian 

 Chromatic number 

 Perron-Frobenius 

 

 

 

 



Start Bounding 

Laplacian Eigenvalues  

 

 



Sum of Eigenvalues, Extremal 

Eigenvalues  

 

  =  �  � ��� where di is the degree 

of vertex i. 

 Proof: take the trace of L 

 

 


 ���−   and    ���−   

 Proof: previous inequality + = . 
 

 

 

 



Courant-Fischer 
 

 For any nxn symmetric matrix A with eigenvalues �  � ⋯ �  (decreasing order) and corresponding 

eigenvectors � , � ,… , � , denote �  the span of � , � , … , �  and � ⊥  the orthogonal complement , 
then  

 

 

 

Proof: see blackboard 
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Courant-Fischer 
 

 Courant-Fischer Min Max Formula: For any nxn 

symmetric matrix A with eigenvalues �  � ⋯�  (decreasing order), 

 

 

 

 

 

 

Proof: see blackboard 
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Courant-Fischer for Laplacian 
 

 Courant-Fischer  Min Max Formula for increasing evalue order 
(e.g. Laplacians): For any nxn symmetric matrix L, with 

eigenvalues   in increasing order 

 

 

 

 

 

 

 

 Definition (Rayleigh Quotient): The ratio                     is called the 

Rayleigh Quotient of x with respect to L. 

 We will use it to bound evalues of Laplacians of certain graphs. 
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Courant-Fischer for Laplacian  
 

 Applying Courant-Fischer for the Laplacian 

we get : 

 

 

 

 

 

 

 

 Useful for getting bounds, if calculating spectra is cumbersome. 

 To get upper bound on λ2, just need to produce vector with small 
Rayleigh Quotient. 

 Similarly, t o get lower bound on λmax, just need to produce vector 
with large Rayleigh Quotient 
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Example 1 
 Lemma1: Let G=(V,E) be a graph with some 

vertex w having degree d. Then 

 

 

 

 Lemma 2: We can also improve on that. Under 

same assumptions, we can show:  

 

 

 
Proof: see blackboard 
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Example 1 
 Lemma1: Let G=(V,E) be a graph with some 

vertex w having degree d. Then 

 

 

 

 Lemma 2: We can also improve on that. Under 

same assumptions, we can show:  

 

 

 
Lemma 2 is tight, take star graph (ex) 

dmax

1max  d



Example 2 
 The Path graph Pn on n vertices has 

 

 

 

 Already knew that eigenvalues are  − cos � ≈ − + �22 ≈ �22, but this is 

easier and more general.  

 
Proof: see blackboard 
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Example 3 
 The complete binary tree Bn on n = � −  

vertices has 

 

 

 

Bn is the graph with edges of the form (u,2u) and 

(u,2u+1) for u<n/2. 

 
Proof: See blackboard 
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Example 3 
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 Lower bounds are harder, we will see 

some in two lectures (different 

technique) 



Adjacency Matrix vs. 

Laplacian 
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• Unweighted graphs for simplicity 

• Adjacency matrix as operator: 

       �� =  : , ∈�  

G = {V,E} 

A has n eigenvalues (counting multiplicities) 

{a1 a2  … an } 

Adjacency Matrix Refresher 



Adjacency Matrix vs. Laplacian for 
d-regular graphs 

 G is d-regular if every vertex has degree 

d. In this case: �� = �� − �� = �� − ��  

 Let =   ⋯  be the 

evalues of L and α α ⋯ α  be 

the evalues of A. 

 We haveαi=d- i and the corresponding 

evectors are the same. 

 

 



 α1 dmax 

 

Proof: See blackboard. 

Bounds on the Eigenvalues of 
Adjacency Matrix 

• Adjacency matrix as operator: 

       �� =  : , ∈�  



 α1 dmax with equality iff graph is  

   dmax – regular. In this case, the first 

eigenvector is the all-one’s vector. (exercise) 

Bounds on the Eigenvalues of 
Adjacency Matrix 



Courant-Fischer for Adjacency 

Matrix Refresher   

 

 

 

 

 

 

 

 Will see next how to apply Courant-Fischer for the adjacency 

matrix to get another bound on the first eigenvalue as well as a 

relation to graph coloring 
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Bounding Adjacency Matrix 

Eigenvalues 

 Lemma 1: α1  is at least the average 

degree of the vertices in G 
      Proof: see blackboard 
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 Lemma 1: α1 is at least the average degree of the 
vertices in G 
 

 While we may think of α1 as being related to the 
average degree, it behaves differently. If we remove 
the vertex of smallest degree in a graph, the average 
degree can increase. However, α1 only decreases when 
we remove a vertex. 

 

 Lemma2: Let A be a symmetric matrix, let B be 
the matrix obtained by removing the last row 
and column from A and let b1 be the largest 
eigenvalue of B. Then α1  b1 

 
      Proof: see blackboard 

 

 

Bounding Adjacency Matrix 

Eigenvalues 



Chromatic Number 

 The chromatic number of a graph G, 

denoted χ(G), is the least k for which G 

has a k-coloring. 

 

 Theorem (Wilf):  χ(G) α1 +  
        

      Proof: see blackboard 



Chromatic Number 

 The chromatic number of a graph G, 

denoted χ(G), is the least k for which G 

has a k-coloring. 

 

 Theorem (Wilf):  χ(G) α1 +  
        

       Improvement over classical bound χ(G) dmax+ , as there are 
graphs (e.g. path graph) where α1 is much less than dmax  

 



 

 We saw what happens for regular graphs. What 

is G is not regular? We know that α1<dmax 

    but what about v1? 

Perron-Frobenius Theorem (for graphs): Let 

G=(V,E,w) be a connected graph, A its adjacency 

matrix and ⋯  its evalues. Then: 

(i) −  

(ii) >  

(iii)  has a strictly positive eigenvector 
 

 

Adjacency Matrix: The Perron- 
Frobenius Theorem 



 

 Another graph Property and eigenvalues: 
Bipartiteness 

 

 Theorem: If G is a connected graph then = −  iff G is bipartite. 
 

 

 
 

Bipartite? 



 

 The most negative eigenvalue of the adjacency 
matrix (and the largest eigenvalue of the 
Laplacian) corresponds to the highest frequency 
vibration in a graph. Its eigenvector tries to 
assign as different as possible values to 
neighbors. Corresponds to coloring.  
 

 

 
 

Coloring, again, and Independent 
Sets 



 

 Theorem (Hoffman). Let S be an independent 
set in G, and let dav(S) be the average degree of 
a vertex in S.  Then  � � − ��� �  

 

 It follows that �� ����−���  (exercise) 

 

 

 
 

Coloring, again, and Independent 
Sets 



 

 Theory can also be applied to Laplacians and any 
matrix with non-positive off-diagonal entries. It 
involves the eigenvector with smallest eigenvalue. 

 

Perron-Frobenius for Laplacians:Let M be a matrix 
with non-positive off-diagonal entries s.t. the graph 
of the no-zero off-diagonal entries is connected. 
Then the smallest eigenvalue has multiplicity 1 and 
the corresponding eigenvector is strictly positive. 

 

 

Next time we will see how to apply Peron Frobenius 
to show Fiedler’s nodal domain theorem. 
 

Laplacian: The Perron-Frobenius 

Theorem 


